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t. Institut fur Festkorperforschung, Kernforschungsanlage Julich, Postfach 1913, D-5170 
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Received 16 August 1982 

Abstract. A method, akin to phenomenological renormalisation, for analysing Monte 
Carlo data in the critical region is proposed. The method is illustrated by an analysis of 
the structure factor of the two-dimensional axial next-nearest neighbour Ising model. 

Phenomenological renormalisation (Nightingale 1976, 1979) has proven to be a very 
powerful method of probing critical behaviour. (For a recent review, see Barber 
(1982).) In this approach, the correlation lengths h ( T )  and &(T) of the system of 
interest are computed in two different finite domains of (linear) size 1 and 1’. (Usually, 
the domains are 1 x CO strips.) A renormalisation T + T’ of the temperature is then 
inferred by setting 

5f(T)/f =&(T’)/l’* (1) 
The fixed point T = T’ = T* = T*(f ,  f’) of this transformation yields an estimate of the 
critical temperature T,, while the exponent v can be estimated from the usual formula 

(2) 
These estimates of T, and v depend upon 1 and 1’ but in practice converge rather 
rapidly as f and 1’ are increased. (For a discussion of the rate of convergence, see 
Derrida and De Seze (1982), Binder (1981b).) 

Phenomenological renormalisation is a consequence (Barber 1982) of finite-size 
scaling (Fisher 1971, Fisher and Barber 1972), (1) following by demanding an exact 
scaling between &(T)  and &(T’). Given this origin, it is natural to conceive (see also 
dos Santos and Sneddon 1981, Binder 1981a, b) of defining an analogous renormalisa- 
tion using some other quantity that satisfies finite-size scaling but is more accessible 
than the correlation length, particularly from the point of view of Monte Carlo 
calculations. 

(dT’/dT)T,T* = b”” = (l/l’)’’”. 

Let 4 ( T )  be some quantity that in the bulk limit ( I + c o )  behaves near T, as 

pm(T) - Cmltl-P, t+0,  (3) 

Pi (7’) - f”Q( 1 ‘ t )  (4) 

where f = (T- T,)/T, and for finite 1 scales as (see Barber 1982) 

with 8 = l / v  and o = p/u.  In analogy with phenomenological renormalisation we now 
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infer a mapping T + T' via 

PI ( T )  = b "P,,( T ' )  ( 5 )  

with b = l / l ' .  We shall refer to this transformation as 'generalised phenomenological 
renormalisation', 

Choosing P, (T)  to be [ ( ( T ) ,  we recover (1) with w = 1. The problem in the 
generalised case is that the exponent w is not known a priori. Further information 
beyond simply P I ( T )  for two values of I is required to estimate jointlyt T, and w. A 
similar problem arises in transfer matrix studies of directed percolation (Kinzel and 
Yeomans 1981) where two correlation lengths t1 and (11 need to be distinguished with 

We can easily adapt the method employed by Kinzel and Yeomans to our problem 
tl - 61 at T,. 

(see also dos Santos and Sneddon 1981). Define 

If, 14 T )  = 1n[P1( T /PI,( T 1 I/ In ( I /  I 7. (6) 

Then the intersection of [ [ , I , (  T )  and (,,,,,t( T )  as functions of T is approximately (T,, w ) .  
Figure 1 illustrates this procedure using Monte Carlo data for the second moment 
i l =  (m2)1 = N-' El , ,  (uQ,) = x r / N  of the d = 2 Isingmodel on I x I squares ( N  = 1') with 
periodic boundary conditions ( x ,  is the susceptibility above the critical temperature). 
Hence w in (3) has the value -2p/v = -77. The curves for [4,8 and [8,16 clearly 
intersect very close to the exact values (T,  = 2.269 . . . , -77 = 0.25). A more detailed 
and refined analysis involving various other system sizes, along the lines used by 
Binder (1981a, b), would undoubtedly yield very accurate estimates of T, and w = -7. 

Binder's method of analysis is actually very similai to that proposed here (e.g. his 
function Wz is identical to with PI = (m2),), but does differ in two features. Firstly, 

k,T I J 

Figure 1. Plot of the functions [,,J = ln(i,/,&,)/ln(l/I') against T for I = 21' = 16 ( X )  and 
I = 21' = 8 (0). Hence i, is the second moment of the Ising model on a 1 x 1 square lattice 
with periodic boundary conditions. The arrows locate the exact values of kBTc/J  and -11. 

i Once T, and o are known, U can be estimated from (2 ) .  However, this is probably difficult with Monte 
Carlo data in view of the derivative required. 
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in general Binder estimates (mz)l for 1 x 1 blocks embedded in a larger system. 
Secondly, his method of determining T, involves a joint scaling of (mZ)l and the fourth 
moment so that data from two different block sizes suffice. Estimating the fourth 
moment by Monte Carlo methods is however difficult. It is thus significant that a 
comparably accurate estimate of T, can be obtained from the second moment alone. 

An alternative method, using data from four sizes, is as follows. Let 

Rl,lf(T) ="m; 
then Rr,,r2(T) and Rr,,b(T) should intersect at (Tc, 6"') provided 

11/12 = 13/14 = b. 

For the d = 2 king model on 1 x 1 squares with periodic boundary conditions, this 
method yields estimates of T, and of a similar accuracy to those in figure 1. In this 
case, the systems are small (4 s 1 s 16) and the Monte Carlo statistics are very good 
using moderate amounts of computer time. We have found, however, that & l r ( T )  is 
very susceptible to fluctuations in the data whereas RLI,( T) is less so. 

To illustrate this second method we have performed a scaling analysis of the 
structure factor x ( q )  of the d = 2  axial next-nearest neighbour Ising (ANNNI) model 
(Fisher and Selke 1980). This model has received considerable attention as the simplest 
Ising model exhibiting an incommensurately modulated phase (see e.g. Selke and 
Fisher 1980, Selke 1981, Villain and Bak 1981, Rujan 1981, Barber and Duxbury 
1981, 1982, Duxbury and Barber 1982, Huse and Fisher 1982 and further references 
cited in these papers). From this work a fairly clear picture of the phase diagram has 
emerged. For weak antiferromagnetic next-nearest neighbour coupling ( K  $, see 
below) the system orders ferromagnetically at low temperatures and melts into the 
paramagnetic phase, where a disorder line separates regions of purely exponentially 
decaying correlations from ones with oscillatory modulated correlations. For K > $ 
the (2,2) antiphase state melts into a modulated or floating incommensurate phase. 
The remaining questions concern mainly the extent of this modulated phase. 

On an infinite lattice, the onset of the modulated phase is heralded (Redner and 
Stanley 1977) as the temperature T is lowered by a divergence in ~ ( q )  at a critical q 
value, qC, dependent on the anisotropy parameter K = \Jzl/J1. Here J1 (J2) is the 
nearest (next-nearest) neighbour interaction in the x direction (J1 > 0, J2 < 0). (We 
follow Selke (1981) and write J1 = (1 - a)Jo, JZ = -do, where Jo (>O) is the nearest 
neighbour interaction in the y direction. Hence K = a / ( l  -a).) As T is lowered 
further, x ( q )  remains infinite but at a different value of q which approaches 7r/2 as 
the antiphase boundary is approached. 

On a finite lattice, x l (q )  remains finite but inside the modulated phase we would 
expect a finite-size scaling ansatz of the form 

Xr(q) - lXQ(le t ;  q) ,  (9) 

where t=[T-Tc(q) ] /Tc(q)  and q is such that x&) diverges. The value of the 
exponent x is unclear (see below). 

Figures 2 and 3 show plots of i l ( 4 ;  T)/tlt(q, T) for the indicated values of I and 
q for two different values of the anisotropy: a =0.376 ( K  -0.6) and a = 0.6 ( K  = lS), 
respectively. Here 

i d q ;  T )  = N-' exp[iq(x - x ' ) l b x x y a x ~ , ~ >  = N-'x(q) ,  (10) 
X Y J ' Y '  
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Fipre2. Plotof thefunctionsRLl' =,fl(q; T) /&(q;  T ) f o r t h e a ~ ~ ~ ~ m o d e I w i t h a  =0.376 
( K  = 0.6) on 88 x 1 lattices for 1 = 21' = 6 (0) and 1 = 21' = 8 (x)  and the indicated q-values 
( q  measured in units of 2 ~ / 8 8 ) .  The arrows locate the estimates of the antiphase transition 
temperature T. within the free-fermion approximation (lower temperature) and the 
Pesch/Kroemer approximation. 

t 
4 -  L A  I -\\ 

$ 4  
0 -- 

k s T l J o  
1.4 1.6 1.8 2.0 1.L 1.6 1.8 2.0 1.4 1.6 1.8 2.0 

Figure 3. As in figure 2 except at a = 0.6 ( K  = 1.5). 

where the lattices used were 88 x 1, i.e. N = 881 spins, with the 'long' dimension in 
the direction of the competition. The wavevector q is measured in units of 2 n / 8 8  
and is, of course, discretised by the finite size. 

Because of long relaxation and fluctuation times due to the large susceptibilities 
and energy barriers associated with the walls created in the modulated phase, very 
extended Monte Carlo runs are needed to get reasonable statistics (Binder 1979, 
Selke 1981, Selke and Yeomans 1982, Morgenstern 1982). The data, displayed in 
figures 2 and 3, were obtained by averaging over several runs of 2 x lo4 to 4 x lo4 
Monte Carlo steps per site. 

Figure 2, for QI = 0.376 ( IC  = 0.6j, clearly shows that q = 15 is never critical, whereas 
~ ( q )  for 16 s q  s 22 become critical at successively lower temperatures as the modu- 
lated phase is crossed. For cy = 0.6 ( K  = 1.5) only the antiphase susceptibility x(7r/2) 
(q  = 22) becomes critical. 
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From our analysis one may estimate the antiphase transition temperature Ta, the 
critical wavevector q,, the transition temperature to the paramagnetic phase T,, the 
temperature dependence of q in the modulated phase and the critical exponent 7. In 
the following, we shall briefly compare our results on these quantities with the ones 
fdund in the literature. 

The estimates for T,, i.e. the temperature where the antiphase susceptibility 
becomes critical, are in between the ones obtained from the free-fermion approxima- 
tion (Villain and Bak 1981) and those calculated via the vanishing of an (approximate) 
interface free energy (Kroemer and Pesch 1982). Additional data for systems of size 
88 x 12 (not displayed in figure 2) confirm our estimate. 

Because of the discretisation of the wavevector one can extract only bounds for 
4,: GT < qc < a~ at K = 0.6 and ET < qc s f~ at K = 1.5. For comparison, mean field 
theory (Elliott 1961) gives 

15 16 

4, = 2T COS-'(1/4K), K >4, (11) 
which agrees very well at the smaller value of K but overestimates appreciably the 
stability of the modulated phase at K = 1.5. Unfortunately, we cannot definitely 
establish the (non-)existence of a Lifshitz point on the (2,2)antiphase side of the phase 
diagram. If a Lifshitz point does exist at K = KL, then qc is ~ / 2  for K > KL. Obviously, 
however, data from CO x 1 strips are required to exclude critical q values that are 
arbitrarily close to 7r/2. 

The behaviour seen here for x l (q )  is similar (as is the method of analysis) to that 
found by Duxbury and Barber (1982) for the q-dependent mass gap of the quantum 
Hamiltonian version (Barber and Duxbury 1981, Rujan 1981) of the ANNNI model 
on relatively short, finite chains. Our bounds on qc are much sharper than those found 
by Duxbury and Barber (1982), and we have lifted the lower bound on K for the 
existence of a Lifshitz point to K L ~  1.5. Within the different bounds on q, our results 
agree quite well with the Hamiltonian conclusions. 

The estimate for T, at K = 0.6 is surprisingly close to the position of the maximum 
in the specific heat, C, if extrapolated in a simple fashion to the thermodynamic limit 
(Selke 1981). Greater deviations might have been expected, since C is not a critical 
quantity for this transition which is believed to be XY-like or of Kosterlitz-Thouless 
character (Selke and Fisher 1980). 

The most interesting aspect of our analysis seems to be the possibility to monitor 
wavevectors as they successively become critical in the modulated phase. Note that 
some wavevectors do not become critical, although the structure factor has a maximum 
at those q values well below the temperature where the specific heat is maximal. This 
shows probably the greatest advantage of phenomenological renormalisation: it yields 
a rather objective criterion for criticality. 

Finally, we turn to the question of the exponent x entering the finite-size scaling 
ansatz (9). In principle this can be obtained from figures 2 or 3. However, while the 
estimates of Tc(q) are relatively stable, the corresponding estimates of b" are very 
dependent upon the accuracy of the Monte Carlo data and the values of 1 used. 
Consequently, no definite conclusions can be drawn. Theoretically, x is presumably 
related to the exponent r )  = r)(T), characterising the algebraic decay of the correlation 
function in the modulated phase (Villain and Bak 1981, Schulz 1980). The precise 
relation is, however, unclear. At a normal critical point such as that in the d = 2 Ising 
model, xt(0) - 12-", which is confirmed by figure 1. This simple behaviour is a con- 
sequence of the infinite-lattice result that xm( T) - ,$*-' near T, and ,$ - 1. The problem 
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for the ANNNI modelt for K > $  is that, at least near the antiphase boundary, two 
correlation lengths 6, and cy need to be distinguished, with & -6; where 8 =; and 
v, = 1 (Schulz 1980). If we assert that 

~oO(rTTl2) - ( ~ x ~ y ) ( * - ~ ) ’ ~  (12) 

within a finite strip 6, - 1, we obtain 

If 77 is small$ this result is not inconsistent with figure 2. On the other hand, the 
upper transition is believed (Selke and Fisher 1980) to be XY-like or of Kosterlitz- 
Thouless character and one might believe that the scaling should be isotropic, implying 
~ ~ ( 4 ~ )  - 12-’ with 7 = $. This value, however, seems to be excluded by the estimates 
of figure 2. These are consistent with (13) and a small value of 7 for all T in 
T, z T B T,. A more detailed analysis of the critical behaviour of xI(T, q )  across the 
modulated phase is certainly warranted. The method of analysis presented here would 
seem to make such an analysis feasible. 

This work was performed while one of us (MNB) was a visitor at KFA-Julich. He is 
grateful for the hospitality and support of KFA-Julich during this time. We thank 
Professor K Binder for several stimulating conversations. 
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